Maternal High Fat Diet Affects Offspring’s Vitamin K-Dependent Proteins Expression Levels
نویسندگان
چکیده
Studies suggest bone growth & development and susceptibility to vascular disease in later life are influenced by maternal nutrition, during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including Osteocalcin, Matrix-gla protein, Periostin, and Gas6, in bone and vascular development. This study extends the analysis of VKDPs previously conducted in 6 week old offspring, into offspring of 30 weeks of age, to assess the longer term effects of a maternal and postnatal high fat (HF) diet on VKDP expression. Overall a HF maternal diet and offspring diet exacerbated the bone changes observed. Sex specific and tissue specific differences were observed in VKDP expression for both aorta and femoral tissues. In addition, significant correlations were observed between femoral OCN, Periostin Gas6, and Vkor expression levels and measures of femoral bone structure. Furthermore, MGP, OCN, Ggcx and Vkor expression levels correlated to mass and fat volume, in both sexes. In summary the current study has highlighted the importance of the long-term effects of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.
منابع مشابه
Extra virgin olive oil in maternal diet increases osteogenic genes expression, but high amounts have deleterious effects on bones in mice offspring at adolescence
Objective(s): Maternal high-fat diet has been shown to have deleterious effects on the offspring bones. However, there is no study to assess the effects of type and amount of maternal dietary oil in an isocaloric diet, with focus on extra virgin olive oil (EVOO). The objective of the current study was to test the hypothesis that type of maternal dietary oil has more effects than its amount in a...
متن کاملSome cyclin-dependent kinase inhibitors-related genes are regulated by vitamin C in a model of diet-induced obesity.
The aim of this research was to investigate differential gene expression of cyclin-dependent kinase inhibitors (CKIs) in white adipose tissue (WAT) and liver from high-fat fed male Wistar rats with or without vitamin C (VC) supplementation (750 mg/kg of body weight). After 56 d of experimentation, animals fed on a cafeteria diet increased significantly body weights and total body fat. Reverse t...
متن کاملMaternal high-fat diet interacts with embryonic Cited2 genotype to reduce Pitx2c expression and enhance penetrance of left–right patterning defects
Deficiency of the transcription factor Cited2 in mice results in cardiac malformation, adrenal agenesis, neural tube, placental defects and partially penetrant cardiopulmonary laterality defects resulting from an abnormal Nodal->Pitx2c pathway. Here we show that a maternal high-fat diet more than doubles the penetrance of laterality defects and, surprisingly, induces palatal clefting in Cited2-...
متن کاملMaternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates.
Maternal obesity is thought to increase the offspring's risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and...
متن کاملVitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice
Several reports suggest that obesity is a risk factor for osteoporosis. Vitamin K plays an important role in improving bone metabolism. This study examined the effects of vitamin K1 and vitamin K2 supplementation on the biochemical markers of bone turnover and morphological microstructure of the bones by using an obese mouse model. Four-week-old C57BL/6J male mice were fed a 10% fat normal diet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015